التمرين الأول : 3ن
1- هل العددان 628 ، 496 أوليان فيما بينهما ؟ وضح إجابتك .
2- جد القاسم المشترك الأكبر ( PGCD ) للعددين 682 ، 496 باستعمال طريقة الفوارق المتتالية .
3- اجعل الكسر غير قابل للاختزال . وضح الطريقة .
التمرين الثاني : 3ن
1- أنشئ المستقيمين ( A ) و ( B ) في المعلم المتعامد و المتجانس (O, I, J)
( A ) : y = x + 1 ( B ) : y = -2x + 2 حيث :
2- عين بيانيا إحداثيي H نقطة تقاطع المستقيمين ( A ) و ( B ) . ثم تحقق من ذلك حسابيا
التمرين الثالث : 3ن
تحصل أحمد في الفصل الأول على العلامات الآتية : 10 ، 8 ، 11 ، 13 ، 9 ، 15
1- أحسب الوسط الحسابي A لعلامات أحمد .
2- أحسب الوسط الحسابي B الذي يتحصل عليه أحمد عندما نضيف 25% لكل مادة .
3- جد العلاقة بين A و B .
التمرين الرابع : 3ن
لتكن العبارة G حيث : G = ( 2x – 3 )2 – 36
1- أنشر و بسط العبارة G حسب قوى x المتناقصة .
2- حلل إلى جداء عاملين العبارة G .
3- حل المعادلة : ( 2x – 9 )(2x + 3 ) = 0 .
الجزء الثاني ) 08 نقاط )
مسألة : 8 ن
محل كراء أشرطة ( K7 ) فيديو تخير زبائنها ما بين اختيارين .
الاختيار الأول : اشتراك شهري بثمن 150 DA و 70 DA لكراء الشريط الواحد .
الاختيار الثاني : اشتراك شهري بثمن 110 DA و 15 DA لكراء الشريط الواحد .
1- أكمل الجدول التالي :
عدد أشرطة الكراء 0 1 2 6 10
ثمن الدفع بالاختيار الأول
ثمن الدفع بالاختيار الثاني
2- x يمثل عدد الأشرطة التي قام زبون بكرائها خلال شهر .
عبر بدلالة x عن :
أ( ثمن الدفع باستعمال الاختيار الأول و ليكن P1(x)
ب( ثمن الدفع باستعمال الاختيار الثاني و ليكن P2(x)
جـ( مثل بيانيا ، في معلم متعامد و متجانس الدالتين و على ورقة مليمترية .
P1 : x
P2 : x
تمثل الدالة P1 بالمستقيم ( D1 ) و تمثل الدالة P2 بالمستقيم ( D2 )
* نأخذ على محور الفواصل 1 cm لكل شريط و على محور التراتيب 1 cm لكل 20 DA .
3- حل المعادلة 7 x + 150 = 15 x + 110
اشرح نتيجة هذه المعادلة .
4- باستعمال البيان السابق ، كم شريطا يلزم كرائه في الشهر حتى يكون الاختيار الأول أفضل من الاختيار الثاني .
5- السيد أحمد اختار الاختيار الثاني فدفع 290 DA للشهر .
استعمل البيان السابق لتحديد عدد الأشرطة التي استأجرها في الشهر .
6- يقترح صاحب المحل على زبائنه اختيار ثالث بثمن شهري قيمته 230 DA مهما كان عدد الأشرطة المستأجرة في الشهر .
أ( مثل في نفس البيان السابق و بمستقيم ( ) الثمن P3 للاختيار الثالث .
ب) كم شريطا يلزم كرائه حتى يكون الاختيار الثالث أفضل من الأولين .
الموضوع 2 من إعداد: قارح طه
التمرين الأول :
a ، b عددان طبيعيان حيث : 390 . a = 315 . b
1- أحسب الكسر
2- اعط الناتج على شكل كسر غير قابل للاختزال .
التمرين الثاني :
1- r عبارة جبرية حيث : + 3 – = r
أكتب r على الشكل a حيث a عدد طبيعي .
2- بين أن العبارة : ( 2 + )( 2 – ) u =
3- احسب بواسطة الحاسبة قيمة مقربة إلى للأعداد : 5 – 4 و
التمرين الثالث :
لدينا العبارات الجبرية التالية :
F = x2 + 6x + 9 ، E = 4x ( x + 3 )
1- حل المعادلة E = 0 .
2- بين أن : F = (x + 3 )2 .
3- حلل العبارة E + F .
التمرين الرابع :
تمثل هذه السلسلة الإحصائية أجور 06 عمال لإحدى المؤسسات :
8000 , 12000 , 20000 , 11000 , 9000 , 18000
1- رتب هذه السلسلة ترتيبا متزايدا .
2- أحسب المتوسط الحسابي ، الوسيط و المدى .
التمرين الخامس :
ABC مثلث قائم في A حيث :
ABC = 60° و AB = 2 cm
أحسب كل من الأطوال AC و BC .
الجزء الثاني ) 08 نقاط )
مسألة :
* يريد السيد بوعلام كراء شاحنة ، فيتصل بوكالتين بمدينته .
– سعر الوكالة الأولى : 12 DA لكل كيلومتر مقطوع .
– سعر الوكالة الثانية : 4 DA لكل كيلومتر مقطوع يضاف إليه تلقائيا 1600 DA
ملاحظة : القيمة التلقائية قيمة ثابتة تضاف إلى المسافة المقطوعة .
* لحساب الكلفة بـ DA بدلالة العدد x للكيلومترات المقطوعة تستطيع استعمال العلاقة :
الوكالة الأولى : A(x) = 12 x
الوكالة الثانية : B(x) = 4x + 1600
1) ساعد بوعلام لاختيار الوكالة الأقل كلفة لقطع مسافة 100 km
2) انقل ثم أتمم الجدول
الوكالة الأولى الوكالة الثانية
x بـ km A(x) DA
B(x) DA
50
200
3) على معلم متعامد و متجانس نختار على محور الفواصل 1 cm لكل 50 km و على محور التراتيب 1 cm لكل 500 DA .
مثل بيانيا (D1) الذي يمثل A(x) و (D2) الذي يمثل B(x)
4) ما هي المسافة التي تكون من أجلها كلفة تنقل السيد بوعلام هي نفسها سواء استعمل الوكالة الأولى أو الوكالة الثانية
5) استنتج حل لجملة المعادلتين : y = 12 x
y = 4 x + 1600
الموضوع 3 من إعداد: قارح طه
التمرين الأول :
إليك العبارة E = (2x – 3)(5 – x) + 2x – 3
1- أنشر و بسط العبارة E .
2- حلل العبارة E .
3- حل المعادلة : (2x – 3)(6 – x) = 0
التمرين الثاني :
أعط الكتابة العلمية للعدد n حيث n =
التمرين الثالث :
A ، B ، C ثلاثة نقط من مستوي مزود بمعلم متعامد و متجانس (O, I, J) حيث
A(4 , 6) ،B(2 , 1) ، C(6 , 1)
1- أحسب إحداثيي M منتصف [ BC ]
2- أحسب الأطوال : AB ، AC ، BC
3- استنتج نوع المثلث ABC
التمرين الرابع :
1- تحقق من أن : (x + y)2 – (x – y)2 = 4xy
2- مساحة مستطيل هي 972 cm2 ، الفرق بين طول و عرض هذا المستطيل يساوي 9 cm باستعمال المساواة السابقة
أ) أحسب نصف محيط هذا المستطيل .
ب) إذا علمت أن عرضه هو 27 cm فاحسب طوله .
3- استنتج طول أحد قطريه .
التمرين الخامس :
AB = 8 cm ، AC = 10 cm
BM = 3,2 cm ، CN = 4 cm
أ) أوجد النسبة
ب) أحسب BC علما أن : MN = 3 c
الجزء الثاني ) 08 نقاط )
مسألة :
يقيم مصطفى في مدينة الجزائر ، و صديقه في البادية على بعد 600km من الجزائر .
على السادسة صباحا انطلق الصديقان أحدهما في اتجاه الآخر ، مصطفى يتحرك بسرعة 75 km/h نرمز بـ x ( بالساعات ) إلى الوقت المستغرق بدءا من الساعة السادسة ، على الساعة السادسة يكون x = 0 .
بعد سير ساعة واحدة أي x = 1 يكون مصطفى على بعد 540 km (600 – 60 ) عن الجزائر.
1) على أي بعد من العاصمة يكون مصطفى لما x = 5 ؟ و لما x = 8 ؟
2) على أي بعد من العاصمة يكون علي لما x = 5 ؟ و لما x = 8 ؟
3) – أ) عبر بدلالة x عن المسافة التي تفصل مصطفى عن العاصمة .
– ب) عبر بدلالة x عن المسافة التي تفصل علي عن العاصمة .
4) نعطى الدالتان : 75 x F : x ، 600 – 60 x G : x
أنقل الجدولين الآتيين ثم أتممهما .
8 5 1 0 x 8 5 1 0 x
F(x) G(x)
5) على ورق مليمتري مثل F ، G
على محور الفواصل 1 cm يمثل 1 ساعة . و على محور التراتيب 1 cm يمثل 100 km .
6) من قراءة البيان عين :
أ) إلى كم تشير الساعة عندما يلتقي مصطفى و علي ؟
ب) على أية مسافة من الجزائر يلتقيان ؟ بين ذلك بخطوط متقطعة .
7) أوجد نتائج السؤال السادس بحل معادلة .
لا تنسونا بالردود
شكرا جزيلا لك اخي على الموضوع… بارك الله فيك
انا لم اجد شيا للسنة اولى متوسط
شكرا للك أخ رزوق سفيان
بارك الله فيك
meeeeeeeeeeeeeeeeeeeeeeeeeerciiiiiiiiiiiiiiiiiiiii iiiiiii
الله يعطيك الصحة على المجهود الكبير
شكرا جزيلا على الموضوع بوركت اخي
الله يرضى عنك وعلى والديك وان يجازيك جزاء المخلصين …آمين